Learn Geometry | 06 | Rectangle and Square

Rectangle: - A parallelogram whose sides are equal and parallelogram with all right angle is called Rectangle. 

आयत :- एक ऐसा समांतर चतुर्भुज जिसकी सम्मुख भुजाएं बराबर और समांतर तथा सभी कोण समकोण हो आयत कहलाता है। 

If AB || DC and AD || BC so that ABCD is a ||gm. 

यदि AB || DC व  AD || BC तो ABCD, एक ||gm होगा। 

1★ Opposite sides of a Rectangle are parallel.

  ★ आयत की संम्मुख भुजाएं समांतर होती है।

                 AB || DC and AD || BC

2★ Opposite sides of a Rectangle are equals.

  ★ आयत की संम्मुख भुजाएं बराबर होती है।

                 AB = DC and AD = BC

3★ Opposite angles of a Rectangle are equals.

  ★ आयत की संम्मुख कोण बराबर होती है।

                 ∠A = ∠C and ∠D = ∠B

4★ All angles of a Rectangle are equal and 90⁰ 

∠A  = ∠b  = ∠C  = ∠D = 90⁰  

  ★ तो आयत के सभी कोण बराबर और समकोण होते हैं। 

∠A = ∠B = ∠C = ∠D = 90⁰ 

5★ Adjacent angles of a Rectangle are supplementary.

  ★ आयत की संलग्न  कोण संपूरक होते हैं।

                 ∠A + ∠B = 180⁰

                 ∠B + ∠C = 180⁰

                  ∠C + ∠D = 180⁰                 

                 ∠A + ∠D = 180⁰

6★ The diagonals of a Rectangle are equals. 

  ★ आयत के विकर्ण बराबर होते हैं।

                    AC = BD 

7★ Diagonal of a Rectangle bisect each other. 

  ★ आयत के विकर्ण एक दूसरे को समद्विभाजित करते हैं।

⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐

Deduction 1— What is the length of the other diagonal?

We know that ABCD is a rectangle. 

So ∠A = ∠D = 90⁰

Side AB = Side DC 

Now 

In ∆DAB = ∆ADC

        AB = DC          [Sides of Rectangle]

         ∠A = ∠D         [ 90⁰ ]

        AD = AD          [Common Sides]

So  ∆DAB ≅ ∆ADC. [by SAS congruenc Rule]

          AC = BD         [by CPCT]  Proved

This shows that the diagonals of a rectangle always have the same in length.                          

⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐

Deduction 2—What is the point of intersection of the two diagonals?



SB II CD and BD is Transversal 

∠ABD = ∠BDC    [A. I. A.]

∠B = 90⁰

∠3 + ∠1 = 90⁰  ........ (1)

In ∆ BCD

∠3 + ∠2 + 90⁰ = 180⁰ 

∠3 + ∠2 = 180⁰ – 90⁰

∠3 + ∠2 = 90⁰ ........ (2)

From Equation (1) and (2)

∠3 + ∠1 = ∠3 + ∠2 

        ∠1 = ∠2   ........ (3)

In ∆AOB = ∆COD

        ∠1 = ∠2               [From Equation 3]

  ∠AOB = ∠COD         [ V.O.A. ]

        AB = CD             [given]

So  ∆AOB ≅ ∆COD. [by AAS congruenc Rule]

          AO = CO         [by CPCT]  Proved

          BO = OD         [by CPCT]  Proved

So, O is the midpoint of AC and BD.

This shows that the diagonals of a rectangle always intersect at their midpoints.

When the diagonals cross at their midpoints, we say that the diagonals bisect each other. Bisecting a quantity means dividing it into two equal parts.         

⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐

Deduction 3— What are the angles between the diagonals?

∠BOA + ∠AOD = 180⁰  by Linear pair 
∠60⁰ + ∠AOD = 180⁰
             ∠AOD = 180⁰ – 60⁰
             ∠AOD = 60⁰

For a
In ∆ AOB
∠A + ∠B + ∠O = 180⁰         [ASPOT]
       a + a + 60⁰ = 180⁰
                     2a = 180⁰ –60⁰
                        a = 120⁰ / 2
                         a = 60⁰
For b
In ∆ AOD
∠A + ∠D + ∠O = 180⁰         [ASPOT]
       b + b + 120⁰ = 180⁰
                     2b = 180⁰ –120⁰
                        b = 60⁰ / 2
                         b = 30⁰
This
Formulas for getting the value of various angles in a parallelogram. 
For a
In ∆ AOB
∠A + ∠B + ∠O = 180⁰         [ASPOT]
       a + a + x = 180⁰
                     2a = 180⁰ –x
                        a = 180⁰ / 2 – x/2
                         a = 90⁰ –x/2

For b
In ∆ AOD
∠A + ∠D + ∠O = 180⁰         [ASPOT]
         b + b + x = 180⁰
                     2b = 180⁰ – (180⁰ –x)
                       2b = 180⁰ – 180⁰ + x
                        2b = x
                          b = x/2

What can we say about AB and CD, and AD and BC?
In ∆AOB = ∆COD
          AO = CO
      ∠AOB = ∠COD
            BO = OD
        ∆AOB ≅ ∆COD        by SAS Congruene 
              AB = CD

In ∆AOD = ∆BOC
          AO = CO
      ∠AOD = ∠COB
            BO = OD
        ∆AOD ≅ ∆COB        by SAS Congruene 
              AD = BC

⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐

Deduction 4—What is the shape of a quadrilateral with all the angles equal to 90°?
SB II CD and BD is Transversal 
∠ABD = ∠BDC    [A. I. A.]
∠B = 90⁰
∠3 + ∠1 = 90⁰  ........ (1)

In ∆ BCD
∠3 + ∠2 + 90⁰ = 180⁰ 
∠3 + ∠2 = 180⁰ – 90⁰
∠3 + ∠2 = 90⁰ ........ (2)

From Equation (1) and (2)
∠3 + ∠1 = ∠3 + ∠2 
        ∠1 = ∠2   ........ (3)

In ∆BAD = ∆DCB
        ∠1 = ∠2               [From Equation 3]
    ∠BAD = ∠DCB         [ V.O.A. ]
        AB = CD             [given]
So  ∆BAD ≅ ∆DCB. [by AAS congruenc Rule]
          AD = CB         [by CPCT]  Proved
          DC = BA         [by CPCT]  Proved
Thus, all the angles of a quadrilateral are right angles, then the opposite sides have equal lengths. Therefore, the quadrilateral is a rectangle. 

⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐

Thus the property of rectangle.
Rectangle: A rectangle is a quadrilateral in which the angles are all 90°.
Property 1: All the angles of a rectangle are 90°.
Property 2: The opposite sides of a rectangle are equal.
Property 3: The opposite sides of a rectangle are parallel to each other.
Property 4: The diagonals of a rectangle are of equal length and they bisect each other.

⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐⭐

★★★★★ Vinjeet Vedic Maths ★★★★★

Square: - A parallelogram one of whose angles is a right angle with a pair of adjacent sides equal is called Rectangle. 

वर्ग :- एक ऐसा समांतर चतुर्भुज जिसका कम से कम एक कोण समकोण तथा संगत भुजाऐं बराबर हों वर्ग कहलाता है। 

If AB || DC and AD || BC so that ABCD is a ||gm. 

यदि AB || DC व  AD || BC तो ABCD, एक ||gm होगा। 

1★ Opposite sides of a Square are parallel.

  ★ वर्ग की संम्मुख भुजाएं समांतर होती है।

                 AB || DC and AD || BC

2★ All sides of a Square are equal.

  ★ वर्ग की सभी भुजाएं बराबर होती है।

                 AB = BC = CD = DA 

3★ Opposite angles of a Square are equals.

  ★ वर्ग की संम्मुख कोण बराबर होती है।

                 ∠A = ∠C and ∠D = ∠B

4★ All angles of a Square are equal and 90⁰ 

               ∠A  = ∠B  = ∠C  = ∠D = 90⁰  

  ★ तो वर्ग के सभी कोण बराबर और समकोण होते हैं। 

              ∠A = ∠B = ∠C = ∠D = 90⁰ 

5★ Adjacent angles of a Square are supplementary.

  ★ वर्ग की संलग्न  कोण संपूरक होते हैं।

                 ∠A + ∠B = 180⁰

                 ∠B + ∠C = 180⁰

                  ∠C + ∠D = 180⁰                 

                 ∠A + ∠D = 180⁰

6★ The diagonals of a Square are equals in length. 

  ★ वर्ग के विकर्ण आपस में बराबर होते हैं।

                    AC = BD 


7★ Diagonal of a Square bisect each other. 

  ★ वर्ग के विकर्ण एक दूसरे को समद्विभाजित करते हैं।

8★ Diagonal bisect each other at right angle (90⁰).

  ★ विकर्ण एक दूसरे को समकोण पर समद्विभाजि करते हैं।



Deduction 5— What should be the angle formed by the diagonals?
















Comments

Popular posts from this blog

CBSE Board Exam 2023 Class 10 ENGLISH (Language and Literature)

Ganita Prakash Class 8 Chapter 7 Solutions Proportional Reasoning 1

Ganita Prakash | Class 8 | Chapter 5 Number Play | Solutions